On duality theory of conic linear problems

نویسنده

  • Alexander Shapiro
چکیده

In this paper we discuss duality theory of optimization problems with a linear objective function and subject to linear constraints with cone inclusions, referred to as conic linear problems. We formulate the Lagrangian dual of a conic linear problem and survey some results based on the conjugate duality approach where the questions of “no duality gap” and existence of optimal solutions are related to properties of the corresponding optimal value function. We discuss in detail applications of the abstract duality theory to the problem of moments, linear semi-infinite and continuous linear programming problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS

The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...

متن کامل

Strong Dual for Conic Mixed-Integer Programs∗

Mixed-integer conic programming is a generalization of mixed-integer linear programming. In this paper, we present an extension of the duality theory for mixed-integer linear programming (see [4], [11]) to the case of mixed-integer conic programming. In particular, we construct a subadditive dual for mixed-integer conic programming problems. Under a simple condition on the primal problem, we ar...

متن کامل

Duality of linear conic problems

It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least one of these problems is feasible. It is also well known that for linear conic problems this property of “no duality gap” may not hold. It is then natural to ask whether there exist some other convex closed cones, apart from polyhedral, for which the “no duality gap” propert...

متن کامل

Universal duality in conic convex optimization

Given a primal-dual pair of linear programs, it is well known that if their optimal values are viewed as lying on the extended real line, then the duality gap is zero, unless both problems are infeasible, in which case the optimal values are +∞ and −∞. In contrast, for optimization problems over nonpolyhedral convex cones, a nonzero duality gap can exist when either the primal or the dual is fe...

متن کامل

Convex Optimization Models: An Overview

1.1. Lagrange Duality . . . . . . . . . . . . . . . . . . p. 2 1.1.1. Separable Problems – Decomposition . . . . . . . p. 7 1.1.2. Partitioning . . . . . . . . . . . . . . . . . . p. 9 1.2. Fenchel Duality and Conic Programming . . . . . . . . p. 10 1.2.1. Linear Conic Problems . . . . . . . . . . . . . p. 15 1.2.2. Second Order Cone Programming . . . . . . . . . p. 17 1.2.3. Semidefinite Progr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999